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The connections between the random elements of a discrete random flow field and the
uncertainty in the hierarchical set of its spatio-temporal scales, obtained by
the symmetric version of the proper orthogonal decomposition (POD) method, are
investigated. It is shown that the relevant statistics for the energy levels, the temporal
modes and the spatial modes can be expressed in an explicit form as power series of
the flow field standard deviation. Such expansions characterize accurately interesting
phenomena of mixing between different flow scales. The basis of the present work is the
assumption that the randomness is characterized by a Gaussian uncorrelated random
field. Two applications of the theory developed are proposed: to the incompressible
flow past a cylinder at Reynolds number Re =100 and to the natural convective
flow over an isothermal horizontal plate at Rayleigh number Ra = 4.75 × 106. The
theoretical predictions are confirmed well by Monte Carlo simulations and interesting
relations between the random flows and the relevant statistics of their POD spatio-
temporal scales are determined and discussed.

1. Introduction
The proper orthogonal decomposition (POD) method was proposed by Lumley

(1970) for detection of spatial coherent patterns in turbulent flows. He introduced it
in the field of hydrodynamics when there was a need for a mathematical definition of
coherent structures in turbulence. To analyse such temporally and spatially evolving
flows Aubry, Guyonnet & Lima (1991) introduced the concept of biorthogonal
decomposition which is a deterministic space–time version of the POD (Aubry 1991;
Aubry, Guyonnet & Lima 1995; Aubry & Lima 1995). One of the most remarkable
feature of such a decomposition is that it gives access to the complexity of the
spatial and temporal dynamics simultaneously. The flow field is decomposed into a
hierarchical set of spatial and temporal orthogonal modes which are coupled. This
generalizes the notion of spatial and temporal structures which, for example, can be
followed through the various instabilities that the flow undergoes as Reynolds number
increases. Low-dimensional linear Galerkin (Noack et al. 2003; Noack, Papas &
Monkewitz 2005; Ma et al. 2003; Deane et al. 1991; Cazemier, Verstappen & Veldman
1998), nonlinear Galerkin (Ma, Karamanos & Karniadakis 2000; Ma et al. 2000) and
spectral viscosity (Sirisup & Karniadakis 2004) models of various flows have been
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successfully developed by using the POD modes. Moreover, the method is a way to
analyse and reconstruct (Venturi & Karniadakis 2004; Tan, Willcox & Damodaran
2003; Tan, Damodaran & Willcox 2004) space time information such as numerical
data and experimental data measured simultaneously at various locations by means of
recently developed experimental techniques such as digital particle image velocimetry
(DPIV), digital particle image thermometry (DPIT) (Ma et al. 2002, 2003), laser
scanning techniques, cross-stream rakes of X-wires (Delville et al. 2003; Gordeyev &
Thomas 2000) or magnetic resonance imaging (MRI).

However, if the observed flow is noisy, perturbed or, more generally, it is considered
as a superposition of random and non-random elements then its space–time structures
should be considered random as well. The quantification of the relation between the
stochastic flow and its random space–time structures extracted by the POD method
is a challenging task as it involves random perturbations of the autocorrelation
operator’s spectral properties. The effects of infinitesimal deterministic perturbations
in the ensemble of data have been investigated in the work by Rathinam &
Petzold (2003) by introducing a POD ‘sensitivity factor’. Other attempts to quantify
directly the statistics for noisy correlation (or covariance) matrices have recently
been made by several Authors. Everson & Roberts (2000) use a Bayesian inference
method to obtain posterior densities for each random eigenvalue; Sengupta & Mitra
(1999) propose a diagrammatic expansion and saddle point integration methods to
quantify the empirical eigenvalue density; Hachem, Loubaton & Najim (2005, 2004)
and Dozier & Silverstein (2004) give a characterization of the eigenvalue density in
terms of its Stieltjes transform; Hoyle & Rattray (2004) use a statistical mechanics
approach (variational mean-field theory) to give an analytical approximation to the
eigenvalue spectral density.

In this paper we propose a new method based upon the perturbation theory for
linear operators (Kato 1995). We show that the relevant statistics for the perturbed
energy levels and the perturbed temporal modes can be expressed in the form of an
explicit power series in the random-flow standard deviation. Therefore we provide
a new point of view which, in turn, will give us a connection between the random
elements of the flow and the uncertainty in the hierarchical set of its spatio-temporal
scales. At the basis of the present work is the assumption that the randomness
is characterized by a Gaussian uncorrelated random field although it is possible
to apply the same approach to more general random fields. The key idea lies in
a theoretical estimation of the overlap between perturbed energy levels through a
resolution indicator function (§ 3.2). We emphasize that our method can also be used
to represent Karhunen–Loève expansions of randomly perturbed covariance kernels.
This is very important, for instance, when an experimental-based (noisy) stochastic
quantity is used as random input in effective uncertainty propagation methods such
as generalized polynomial chaos (Xiu & Karniadakis 2002, 2003; Xiu 2004) or
multi-element generalized polynomial chaos (Wan & Karniadakis 2005a, b).

We propose two applications of the theory developed: to the incompressible flow
past a cylinder at Re = 100 and to the natural convective flow above an isothermal,
highly elongated, horizontal plate at Rayleigh number Ra = 4.75 × 106. We have
selected these flows as test problems due to the numerous experimental and theoretical
investigations carried out during recent years as well as because of their differences.
The flow past a cylinder at Re = 100 exhibits a periodic laminar wake (Zdravkovich
1997) which, in turn, gives a POD decomposition of the velocity field madeup of
coupled degenerate periodic eigenmodes with a pronounced energy decay (Ma &
Karniadakis 2002; Noack et al. 2003; Ma et al. 2003). On the other hand the
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natural convective flow above an isothermal horizontal plate at Ra = 4.75 × 106 is
chaotic. Because of the high Rayleigh number, which activates many intermodal
energy transfers between the various scales (Couplet, Sagaut & Basdevant 2003), the
temperature field decomposition is characterized by simple eigenvalues with relatively
small separation. Despite the differences between these two flows the perturbation of
their deterministic states shows interesting analogies.

This paper is organized as follows. In § 2 we formulate the POD perturbation
problem. In § 3 we describe the perturbation theory for the POD eigen-states and
their Fourier analysis. In § 4 we analyse the link between the random dynamics
in time and space and we stress a symmetry breaking between the resolvable part
of the temporal and spatial dynamic. In § 5 we propose two applications of the
theory developed: to the incompressible flow past a circular cylinder at Re = 100 and
the natural convective flow above isothermal horizontal plates in confined domains
at Rayleigh number Ra = 4.75 × 106. The main findings and their implications are
outlined and discussed in § 6.

2. POD theory and the perturbation of the deterministic state
Given a d-dimensional real vector flow field u(x, t) in the space–time domain Ω × T

(which means that the ordered pair (x, t) is such that x ∈ Ω (spatial domain) and
t ∈ T (temporal domain)) we can look for a biorthogonal representation (Aubry et al.
(1991)) of u(x, t) in the form

u(x, t) =

∞∑
k=1

√
µkΦk(x)ψk(t). (2.1)

Let us consider the inner product

(u, v) :=

∫
Ω

∫
T

u(x, t) · v(x, t) dx dt (2.2)

and the functional (energy norm)

L[Φ i , ψj ] :=

(
u(x, t) −

∞∑
k=1

√
µkΦk(x)ψk(t), u(x, t) −

∞∑
k=1

√
µkΦk(x)ψk(t)

)
. (2.3)

It is well known that the minimization of (2.3) with respect to an arbitrary variation
of Φk(x) and ψk(t) leads to the Euler–Lagrange equations

√
µkψk(t) =

∫
Ω

u(x, t) · Φk(x) dx, (2.4a)

√
µkΦk(x) =

∫
T

u(x, t)ψk(t) dt. (2.4b)

These equations are called dispersion relations and they provide the link between the
spatial and the temporal evolution of the system. Following Aubry et al. (1991) it is
useful to define the linear integral operators U and U†:

(UΦk)(t) :=

∫
Ω

u(x, t) · Φk(x) dx =
√

µkψk(t), (2.5a)

(U†ψk)(x) :=

∫
T

u(x, t)ψk(t) dt =
√

µkΦk(x). (2.5b)
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If we apply the operator U† to (2.5a) and the operator U to (2.5b) we obtain the
eigenvalue problems:

(U†UΦk)(x) =

∫
Ω

S(x, x ′)Φk(x ′) dx ′ = µkΦk(x), (2.6a)

(UU†ψk)(t) =

∫
T

T(t, t ′)ψk(t
′) dt ′ = µkψk(t). (2.6b)

In (2.6a) and (2.6b) µk are the repeated eigenvalues of U†U and UU†, while we will
denote by λk the eigenvalues counted with their multiplicity. The kernels of the
integral operators U†U and UU† are symmetric and positive, representing the spatial
and the temporal autocorrelation respectively:

S(x, x ′) :=

∫
T

u(x, t) · u(x ′, t) dt, (2.7a)

T(t, t ′) :=

∫
Ω

u(x, t) · u(x, t ′) dx. (2.7b)

The symmetric version (Aubry 1991) of the proper orthogonal decomposition (2.1)
corresponds to the spectral analysis of the operator U and consists of square root of
proper values (eigenvalues) and proper functions (eigenfunctions) of the correlation
operators (2.6a) and (2.6b). Following the so-called ‘snapshots method’ (Sirovich
1987; Aubry (1991)) the decomposition (2.1) is computed in practice by solving the
eigenvalue problem (2.6b) using a time scale roughly of the order of or greater than the
correlation time and then the spatial mode relation (2.4b). We order the eigenvalues
as

µj � µj+1, λk > λk+1, j, k ∈ �. (2.8)

Now we consider a random additive perturbation of the deterministic flow field
u(x, t) in the form

ũ(x, t) = u(x, t) + δu(x, t). (2.9)

Note that (2.9) can also be seen as a decomposition of a turbulent quantity ũ into a
mean flow u(x, t) = 〈ũ(x, t)〉 and a zero-mean random fluctuation δu(x, t), where 〈 · 〉
is a suitable averaging operation. The substitution of (2.9) into (2.7b) gives

T̃(t, t ′) = T(t, t ′) + H(1)(t, t ′) + H(2)(t, t ′) (2.10)

where

H(1)(t, t ′) :=

∫
Ω

(u(x, t) · δu(x, t ′) + u(x, t ′) · δu(x, t)) dx, (2.11a)

H(2)(t, t ′) :=

∫
Ω

δu(x, t) · δu(x, t ′) dx. (2.11b)

The perturbed temporal autocorrelation T̃(t, t ′) appears to be a superimposition of
three symmetric kernels: T(t, t ′) is the temporal autocorrelation of the unperturbed
field (2.7b), H(1)(t, t ′) is the temporal correlation between the unperturbed field and
the perturbation and H(2)(t, t ′) is the temporal autocorrelation of the perturbation.
Equivalently we can say that the autocorrelation of ũ consists of two ‘free’ auto-
correlations T and H(2) plus an ‘interaction’ term H(1). Equation (2.10) implies the

following expansion for the perturbed temporal correlation operator ŨŨ
†
:

ŨŨ
†
= UU† + H(1) + H(2) (2.12)
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where H(1) and H(2) are integral operators with kernel (2.11a) and (2.11b) respectively.
We define

H := H(1) + H(2) (2.13)

and write the perturbation problem (2.12) as

ŨŨ
†
= UU† + H. (2.14)

Obviously, the operator H is an integral operator with kernel

H(t, t ′) := H(1)(t, t ′) + H(2)(t, t ′) . (2.15)

In this paper we will determine the relevant statistics for the eigenvalues and the

eigenfunctions of ŨŨ
†
, given the deterministic UU†, under the assumption that δu(x, t)

is a Gaussian uncorrelated (in time and space) random field with variance σ 2(x, t)
which is homogeneous and stationary, i.e. not dependent on x and t . In a finite-
dimensional representation (see Appendix A) this means that the joint probability
density of δu has the form

π(δu(x1, t1), . . . , δu(xN, tS); σ ) = K exp

[
− 1

2σ 2

N∑
i=1

S∑
l=1

δu(xi , tl) · δu(xi , tl)

]
(2.16)

where N is the number of spatial points, S is the number of time instants and K is a
suitable normalization constant. Note that the proposed method can also be applied
to more general types of random perturbations δu (by a suitable recalculation of the
expectation relations given in Appendix B).

3. Statistics for the perturbed energy levels and temporal modes

We consider the perturbed correlation operator ŨŨ
†

as a second-order analytic
perturbation expansion in the random-flow standard deviation σ (perturbation
parameter). To this end we write (2.12) as

ŨŨ
†
(σ ) = UU† + σ

(
H(1)

σ

)
+ σ 2

(
H(2)

σ 2

)
. (3.1)

We also define the following normalized perturbation operators

Ĥ
(1)

:=
H(1)

σ
, Ĥ

(2)
:=

H(2)

σ 2
. (3.2a, b)

The substitution of (3.2a) and (3.2b) into (3.1) gives

ŨŨ
†
(σ ) = UU† + σ Ĥ

(1)
+ σ 2Ĥ

(2)
, (3.3)

which, by virtue of (2.12), is exact for perturbations of arbitrary magnitude. Note that

the kernels of Ĥ
(1)

and Ĥ
(2)

contain a normalized random field δû, i.e. a random field
with unit variance. We shall also specify a relation between the standard deviation of
δu (or, equivalently, ũ) and the unperturbed flow u. To this end it is better to recast
(in non-dimensional form) the perturbation problem (3.3) as

ŨŨ
†

u2
(σ ) =

UU†

u2
+

(
σ

u

)
Ĥ

(1)

u
+

(
σ

u

)2

Ĥ
(2)

, (3.4)

where u is a given scaling factor for the field u(x, t). In (3.4) both ŨŨ
†
/u2 and UU†/u2

are non-dimensional while σ/u is the new dimensionless perturbation parameter,
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which is widely used in engineering practice (given, for instance, as a percentage of
the instrument’s range). In the next subsections we will calculate the relevant statistics

for the eigenvalues (energy levels) and the eigenfunctions (temporal modes) of ŨŨ
†

building upon the Kato’s perturbation theory for linear operators (Kato 1995). The
statistics for the aforementioned spectral properties will be given as power series in the
powers of the random-flow standard deviation σ or, equivalently, σ/u. The random

nature of Ĥ
(1)

and Ĥ
(2)

in (3.4) implies that such expansions converge with a certain
probability which is closely related to the statistical separation of the perturbed energy
levels discussed in § 3.2.

3.1. Statistics for the random energy levels

We consider a third-order perturbation expansion for the weighted mean of the

perturbed energy levels λ̃j (σ ) (Kato 1995)†

δλj ≡ λ̃j (σ ) − λj = σ λ̂
(1)
j + σ 2λ̂

(2)
j + σ 3λ̂

(3)
j + O

(
σ 4λ̂

(4)
j

)
(3.5)

where

λ̂
(1)
j =

1

mj

tr
(
Ĥ

(1)
Pj

)
, (3.6a)

λ̂
(2)
j =

1

mj

tr
(
Ĥ

(2)
Pj − Ĥ

(1)
Sj Ĥ

(1)
Pj

)
, (3.6b)

λ̂
(3)
j =

1

mj

tr
(
−Ĥ

(1)
Sj Ĥ

(2)
Pj − Ĥ

(2)
Sj Ĥ

(1)
Pj + Ĥ

(1)
Sj Ĥ

(1)
Sj Ĥ

(1)
Pj (3.6c)

− Ĥ
(1)

S2
j Ĥ

(1)
Pj Ĥ

(1)
Pj

)
.

In (3.6a)–(3.6c) mj is the multiplicity of the unperturbed eigenvalue λj , tr ( · ) denotes
the trace operator, Pj the projection (A 15) onto the spectral subspace corresponding
to λj and Sj the reduced resolvent (A 16) with respect to λj . We use the expectation
relations (B 3a)–(B 3g) obtained in Appendix B to discard the odd powers of σ and
write the expected value and the standard deviation of δλj as

〈δλj 〉 = σ 2
〈
λ̂

(2)
j

〉
+ O
(
σ 4
〈
λ̂

(4)
j

〉)
, (3.7)

σδλj
=
[
σ 2
〈(
λ̂

(1)
j

)2〉
+ σ 4
(〈(

λ̂
(2)
j

)2〉−
〈
λ̂

(2)
j

〉2
+
〈
λ̂

(1)
j λ̂

(3)
j

〉)
+ · · ·
]1/2

(3.8)

where the averaging operator
〈

·
〉

is defined in (B 2).

3.1.1. The averaged energy levels

By applying (B 3b) and (B 3d) to 〈λ̂(2)
j 〉 it is easy to show that (3.7) leads to

〈λ̃j 〉 = λj + σ 2

[
�t |Ω |d − �t2

mj

(
tr (Sj )tr

(
T(2)Pj

)
+ tr (Pj )tr

(
T(2)Sj

))]
+ O
(
σ 4
〈
λ̂

(4)
j

〉)
, (3.9)

† It is well known that if the unperturbed eigenvalue λj is degenerate then, after the perturbation,
it will generally split into several eigenvalues µ̃jk

(σ ) (the λj -group). It is very hard to keep track
of the behaviour of each of these perturbed eigenvalues. In principle this can be done successfully
using the reduction theory (Kato 1995). However here we are dealing with random operators so the
first stage of the reduction process is the determination of the spectral properties for the random

matrix Pj Ĥ
(1)

Pj which is itself a very demanding problem.
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where �t is the time interval between two snapshots of the flow field, |Ω | is the
measure of the spatial domain, d the dimension of the flow field and T(2) is defined
in (A 10). Equivalently, we define the antisymmetric matrix

Λkj :=
tr (Pk)tr

(
T(2)Pj

)
+ tr (Pj )tr

(
T(2)Pk

)
λk − λj

, k 	= j, (3.10)

and write (3.9) as

〈λ̃j 〉 = λj + σ 2

[
�t |Ω |d − �t2

mj

∑
k 	=j

Λkj

]
+ O
(
σ 4
〈
λ̂

(4)
j

〉)
. (3.11)

We note that 〈δλj 〉 � 0 ∀j , which means that, in a third-order approximation, Gaussian
uncorrelated random perturbations (2.16) always increase the average energy of the
POD modes. Moreover, because of the skew-symmetry of Λkj , from (3.11) we have
that the averaged total energy of the perturbation is∑

j

〈δλj 〉 = σ 2|Ω ||T |d. (3.12)

This result is in agreement with the exact relation (3.21) obtained in § 3.3. The
constraint (3.21) also implies that all the subsequent higher-order terms in (3.7) must
be represented by antisymmetric matrices.

3.1.2. The standard deviations

After some computations of the terms in (3.8) the following expression for the

standard deviation of λ̃j (or, equivalently, δλj ) is obtained:

σλ̃j
=

[
4
σ 2�t2

m2
j

tr
(
T(2)Pj

)
+ 2

σ 4

m2
j

[
�t2dΥ2mj − 2�t3

(
2tr (Sj )tr

(
T(3)Pj

)
+ mj tr

(
T(3)Sj

))
+ �t4

(
2tr
(
T(2)S2

j T(2)Pj

)
(2 − mj )

+ 2tr
(
T(2)S2

j

)
tr
(
T(2)Pj

)
+ mj tr

(
T(2)Sj T(2)Sj

)
+ 4tr (Sj )tr

(
T(2)Sj T(2)Pj

)
− 3tr
(
S2

j

)
tr
(
T(2)Pj T(2)Pj

))]
+ · · ·
]1/2

, (3.13)

where T(2), T(3) and Υ2 are defined in (A 10) and (A 13). As we will see in § 5 the
coefficient which multiplies σ 4 characterizes an interesting phenomenon of mixing
between different scales of the flow. If only a first-order approximation is needed then
from (3.9) and (3.13) we have

〈λ̃j 〉 � λj , (3.14a)

σλ̃j
� 2

σ�t

mj

√
tr
(
T(2)Pj

)
. (3.14b)

This means that the perturbed weighted mean for the j th λ-group must lie in the
neighbourhood of the unperturbed j th eigenvalue.

3.2. Separation between perturbed energy levels

We propose a simple criterion to identify the number of resolvable POD modes as a
function of the random-flow standard deviation σ . Let ξ be a real positive parameter.
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~

~
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Figure 1. Separation between perturbed energy levels.

With probability related to the choice of ξ , the separation of the kth perturbed energy
level from nearby (upper and lower) ones can be written as

s
(a)
k := 〈λ̃k−1〉 − 〈λ̃k〉 − ξ

(
σλ̃k−1

+ σλ̃k

)
from above,

s
(b)
k := 〈λ̃k〉 − 〈λ̃k+1〉 − ξ

(
σλ̃k

+ σλ̃k+1

)
from below.

⎫⎬⎭ (3.15)

A graphical representation of s
(a)
k and s

(b)
k is given in figure 1. Note that s

(a)
k = s

(b)
k−1.

Therefore the condition

min
{
s

(b)
k , s

(a)
k

}
= min

{
s

(b)
k , s

(b)
k−1

}
� 0 (3.16)

guarantees, with probability related to the choice of ξ , that the kth energy level
remains separated from nearby ones. Equivalently, we define the function

Dk(σ ) :=
σλ̃k

+ σλ̃k+1〈
λ̃k

〉
−
〈
λ̃k+1

〉 (3.17)

and write the condition (3.16) as

Mk(σ ) := max{Dk(σ ), Dk−1(σ )} �
1

ξ
. (3.18)

If the inequality (3.18) is satisfied then the dimension of the kth perturbed eigenspace
is constant with σ , which is the necessary condition for the convergence of all the
perturbation series in § 3.1 and § 3.4 (see Kato 1995). In other words, if we solve
the inequality (3.18) for σ (graphically or analytically), we obtain the maximum
admissible random-flow standard deviation which ensures, with probability related
to the choice of ξ , that the kth POD mode is resolvable. Therefore Mk(σ ) will be
called the resolution indicator function for the kth eigenspace and (3.18) the resolution
inequality. We should mention that other authors have proposed different rules to
identify the so-called ‘knee’ of the POD eigenspectrum (see Johnstone 2001; Sengupta
& Mitra 1999 and the references therein).
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3.3. Statistics for the total energy of the perturbed field

It is well known (Lumley 1970; Holmes, Lumley & Berkooz 1996) that the total
energy of the flow field equals half of the trace of its autocorrelation operator. Given
the unperturbed UU† we have from (2.14) the trace identity

tr (ŨŨ
†
) = tr (UU†) + tr (H), (3.19)

which is an energy balance. In fact equation (3.19) states that the total energy of the
perturbed field ũ equals the sum of the energies of the unperturbed field u and the
perturbation. The average of tr (H) is

〈tr (H)〉 =

∫
T

〈H(t, t)〉 dt. (3.20)

By substituting (2.15) into (3.20) and using (B 3a) and (B 3d) we see that (3.19) leads
to 〈

S∑
k=1

µ̃k

〉
=

S∑
k=1

µk + dσ 2|Ω ||T |, (3.21)

where S is the number of snapshots; µ̃k (µ̃k � 0) are the (unknown) repeated

eigenvalues of ŨŨ
†
; µk (µk � 0) are the repeated eigenvalues of UU†; |Ω |, |T |

are the measures of the spatial and the temporal domains respectively. Therefore
Gaussian uncorrelated perturbations always increase the average energy of the field.
Interestingly this increment does not depend on the number of snapshots. As is easily
seen, we can reach the same conclusion (3.21) in a more general setting, where the
random field δu(x, t) has zero mean and each component is in a wide sense stationary
(Papoulis 1991; Lumley 1970). Using (B 3b), (B 3e) and (B 3f) we find that the standard
deviation of tr (H) is

σtr (H) = σ�t
√

4Θ2 + 2dσ 2SΥ2 (3.22)

where Θ2 and Υ2 are defined in (A 11) and (A 13) respectively. Formulae (3.21) and
(3.22) are exact for random perturbations (2.16) of arbitrary ‘magnitude’ σ .

3.4. Statistics for the random temporal modes

One of the most remarkable results of the analytic perturbation theory for
symmetric operators is the existence of a unitary transformation Z(σ ) (depending
smoothly on the perturbation parameter σ ) which transforms orthonormal families

of eigenfunctions of UU† into orthonormal families of eigenfunctions of ŨŨ
†
(σ ). For

single eigenspaces, under the hypothesis of absence of eigenvalue splitting, such a
transformation takes the form

Wj (σ ) = Pj +

∞∑
n=1

σnW(n)
j , (3.23)

where

W(1)
j = −Sj Ĥ

(1)
Pj , (3.24a)

W(2)
j = −Sj Ĥ

(2)
Pj + Sj Ĥ

(1)
Sj Ĥ

(1)
Pj − S2

j Ĥ
(1)

Pj Ĥ
(1)

Pj

− 1
2
Pj Ĥ

(1)
S2

j Ĥ
(1)

Pj , (3.24b)

...
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(see Kato 1995). The transformation (3.23) was derived by Kato (1950) in connection
with the adiabatic theorem in quantum mechanics. Given an orthonormal family of
eigenfunctions {ψjk

(t)} of the unperturbed correlation operator UU† the corresponding

(not normalized†) perturbed eigenfunctions of ŨŨ
†

can be obtained by the mapping

ψ̃jk
(t) = Wj (σ )ψjk

(t), k = 1, . . . , mj , (3.25)

i.e.

ψ̃jk
(t) = ψjk

(t) + σW(1)
j ψjk

(t) + σ 2W(2)
j ψjk

(t) + · · · . (3.26)

3.4.1. The averaged temporal modes

Using (B 3a) we have
〈
W(1)

j

〉
= 0 and therefore (3.26) gives〈

ψ̃jk
(t)
〉

= ψjk
(t) + σ 2

〈
W(2)

j

〉
ψjk

(t) + O
(
σ 4
〈
W(4)

j

〉
ψjk

(t)
)
. (3.27)

The operator 〈W (2)
j 〉 is obtained in Appendix C:〈

W (2)
j

〉
= �t2

([
tr (Sj )Sj − tr (Pj )S

2
j − 1

2
tr
(
S2

j

)
Pj

]
T(2) − 1

2
tr
(
T(2)S2

j

)
I
)
. (3.28)

Equations (3.27) and (3.28) provide an approximation for the expected perturbed
temporal modes which is accurate to the third order in σ .

3.4.2. The standard deviation of the temporal modes

We approximate the variance of the random temporal modes to the second order
in σ . After some computations it is easy to see that the standard deviation can be
expressed as

σψ̃jk

=
[
σ 2
〈(

W(1)
j ψjk

)2〉
+ · · ·
]1/2

=
[
σ 2�t
(
diag
(
Sj T(2)Sj

)
+ diag

(
S2

j

)(
T(2)ψjk

, ψjk

)
T

)
+ · · ·
]1/2

(3.29)

where (T(2)ψjk
, ψjk

)T denotes the inner product
∑S

l=1[T(2)ψjk
]lψjk

(tl)�t and diag(A)
stands for a vector whose components are the diagonal entries of the matrix A.
Equations (3.27) and (3.29) show that the perturbed temporal modes must lie in the
neighbourhood of the unperturbed ones.

3.5. Fourier analysis

In view of the application presented in § 5.1 we need some tools to perform an analysis
of the random temporal modes which is phase independent. It is well known (Lumley
1970; Therrien 1988; Oppenheim & Shafer 1975; Papoulis 1991) that the Fourier
transform of the autocorrelation function

R̃(α) =

∫ ∞

−∞
〈ψ̃(t ′ + α)ψ̃(t ′)〉 dt ′ (3.30)

equals the averaged power density of the process ψ̃(t ′), i.e. the expected Fourier power
spectrum

〈|Ψ̃ |2〉(w) =

∫ ∞

−∞
R̃(α)e−jwα dα. (3.31)

This in turn implies that the autocorrelation function (3.30) ignores the phase

information of ψ̃ .

† It is also possible to derive the expression for the transformation Z(σ ) that preserves the norm
(see Kato 1995). Here we only discuss the simpler form (3.23) that preserves orthogonality.
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3.5.1. The autocorrelation function

We use the following estimator for (3.30) (see Therrien 1988; Oppenheim & Shafer
1975):

R̃|l| = �t

S−|l|∑
m=1

〈
ψ̃m+|l|ψ̃m

〉
, |l| � S. (3.32)

Note that R̃l = R̃−l and that R̃l is the sum of the elements in the lth diagonal of the
autocorrelation matrix (F 1) given in Appendix F. The symmetry of the latter ensures
that the autocorrelation function is an even function. Thus its Fourier transform is real
and equals the averaged power density of the stochastic process ψ̃ . We remark that
(3.32), calculated with (F 1), is valid under the hypothesis of absence of eigenvalue
splitting.

4. The link between the random dynamics in time and space
In the fluid mechanics framework suitable combinations of POD spatial modes have

been recognized to be coherent structures (Holmes et al. 1996; Liu 1988; Lumley 1970;
Gad-El-Hak 2000). We derive a perturbation expansion for such modes in a rather
general framework, i.e. for a random field ũ = u + δu under only the hypothesis of
absence of eigenvalue splitting. This can be successfully done using the dispersion
relation (2.4b):

Φjk
(x) =

1
√

µjk

∫
T

u(x, t)ψjk
(t) dt. (4.1)

We recall that the µjk
are the repeated eigenvalues of the temporal autocorrelation

while the ψjk
(t) are the unperturbed normalized temporal modes. If we assume that

there is no splitting of eigenvalues, i.e. µ̃jk
(σ ) = λ̃j (σ ) for k = 1, . . . , mj , then the

perturbed spatial modes can be calculated by the following equation:

Φ̃jk
(x, σ ) =

1√
λ̃j (σ )

∫
T

(u(x, t) + σδû(x, t))Wj (σ )ψjk
(t), k = 1, . . . , mj , (4.2)

where δû(x, t) is a random perturbation with unit variance and Wj (σ ) is given in

(3.23). As shown in Appendix D we can expand Φ̃jk
(x, σ ) as follows:

Φ̃jk
(x, σ ) = Φjk

(x) + σN(1)
j Φjk

+ · · · . (4.3)

where the operator N(1)
j , which represents the first-order correction for the unperturbed

structure Φjk
, is

N(1)
j :=

1

λj

(
U†W (1)

j U + δU†U − 1
2
λ̂

(1)
j I
)

(4.4)

and

δU†φ :=

∫
T

δû (x, t) φ(t) dt . (4.5)

Note that the presence of δU†U in (4.4) implies that it is possible to have a perturbation
in the kth spatial mode even though, for a certain determination of δu(x, t), the kth

temporal mode is perfectly resolved (i.e. W (k)
j = 0, λ̂(k)

j = 0). Also, the perturbation is
in inverse proportionality to λk (which is the energy of the unperturbed kth mode).
The operator N(1)

j breaks the symmetry between the resolvable part of the temporal
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~

Figure 2. Principle sketch for perturbation analysis.

and the spatial dynamics. In other words one could not expect that the presence
of perturbations in the ensemble of data are equally ‘shared’ between the space
and the time dynamic. A similar analysis was performed qualitatively in Venturi &
Karniadakis (2004). Moreover we observe that first-order perturbation in the structure
Φjk

(x) is due to the following three contributions:

(i) the first-order temporal perturbation W(1)
j ψjk

(t);

(ii) the first-order perturbation in energy λ̂
(1)
j ;

(iii) the perturbation in the data through the operator (4.5).

5. Applications
In this section we address two applications of the POD perturbation theory

developed in § 2 and § 3 to the incompressible flow past a cylinder at Re =100
and to the natural convective flow above an isothermal, highly elongated, horizontal
plate at Rayleigh number Ra = 4.75 × 106. The perturbation analysis of these flows
will be performed following the principles shown in figure 2.

The first step is the POD analysis of the unperturbed (or ‘mean’) flow 〈ũ〉 = u and
the computation of quantities defined in Appendix A such as projections Pj , reduced
resolvents Sj , matrices T(z) and traces Θz. Having the POD modes of 〈ũ〉 and the
statistical characterization of the perturbation δu (through the probability density
(2.16) and relations derived in Appendix B) we compute the statistics for the POD
modes of ũ = 〈u〉+δu as function of the standard deviation of δu (or, equivalently, ũ)
using the equations derived in § 3. As discussed in § 3.2 these statistics make sense for
the so-called resolvable modes which are identifiable using the resolution indicator
functions (3.18).

5.1. Incompressible flow past a cylinder

We consider two-dimensional incompressible flow past a circular cylinder
(Zdravkovich 1997) at Reynolds number Re = 100, based on the cylinder diameter
D and on the inflow velocity. We have simulated the time-dependent Navier–Stokes
flow using the spectral/hp finite element method described in Karniadakis & Sherwin
(1999) on a mesh consisting of 412 spectral triangular elements (figure 3) of order
p = 8. After we had established the fully periodic state, we extracted from the DNS
40 equidistant snapshots in a period. The POD analysis and the low-dimensional
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Figure 3. Geometry and computational mesh. The domain is composed of 412 spectral
elements each with 9 × 9 collocation points.
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Figure 4. (a) DNS-based POD eigenspectrum (unperturbed flow) and spectra of perturbed
flows corresponding to different σ/u. (b) Experimental POD eigenspectrum from 2D-PIV
measurements of flow past a cylinder at Re � 100. (Courtesy of B. Pulvirenti, University of
Bologna.)

modelling of such unperturbed flows have been studied extensively during the past
few years (Ma & Karniadakis 2002; Ma et al. 2003; Sirisup & Karniadakis 2004; Ma
2001; Noack et al. 2003; Deane et al. 1991; see also Venturi & Karniadakis 2004).

In order to have consistent results for an entire class of flows we use the
non-dimensional version of the perturbation theory (3.4) where the dimensionless
perturbation parameter σ/u is scaled by the unperturbed inflow streamwise velocity
u. We have simulated random space–time additive perturbations δu(xi , tl) according
to the probability density (2.16) at different levels σ/u and constructed an ensemble
of 40 000 independent possible realizations of the perturbed flow ũ for each level.
The effects of such perturbations on the POD eigenspectrum are shown in figure 4
where we also plot an experimental eigenspectrum from 2D-PIV measurement of
this flow (courtesy of B. Pulvirenti, University of Bologna). The similarity shown
in figure 4 between the perturbed spectrum corresponding to σ/u =0.1 (a) and the
experimental PIV-based spectrum (b) suggests a guideline for designing the experiment
in order to increase the number of POD-resolved modes. In fact, assuming that the
standard deviation of the PIV system is approximately constant within a certain
range of displacements (Raffel, Willert & Kompenhans 1998; Westerweel 2000) and
that enough spatial and temporal resolution is available, the increase of the inflow
streamwise velocity u will lower the ratio σ/u and improve the POD-resolution (see
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Figure 5. Resolvable eigenmodes as a function of the dimensionless random-flow standard
deviation σ/u.

figure 4). Obviously the cylinder’s diameter needs to be reduced in order to keep Re
constant. We conclude that we can obtain an enhancement of the POD-resolution by
going towards smaller length scales.

5.1.1. Statistics for the perturbed energy levels

As shown in figure 4 at Re = 100 all the unperturbed POD eigen-states (except the
first, which approximately represents the mean field) are degenerate with degeneracy
2.† Therefore equations (3.9) and (3.13) characterize the relevant statistics for the
weighted means of the perturbed energy levels. In other words if µ21

= µ22
are two

repeated unperturbed eigenvalues and λ2 = µ21
=µ22

is their weighted mean then it

is possible to compute the statistics for λ̃2 = (µ̃21
+ µ̃22

)/2. In the absence of splitting

we also have λ̃2 = µ̃21
= µ̃22

.

5.1.2. The separation of the energy levels and the ‘bulk’ spectrum

In figure 5(a) we plot the resolution indicator functions (3.18) for all the eigenspaces.
As pointed out in § 3.2, the energy level of the kth perturbed temporal eigenspace
is distinguishable from the other levels if the inequality (3.18) is satsified. We
explain the meaning of the figure 5(a) by a simple example. Let us assume for
simplicity that the probability density of all the perturbed energy levels is Gaussian.
If the random-flow standard deviation is 1 % of the inflow streamwise velocity, i.e.
σ/u =0.01, then from figure 5 we see that it is possible to resolve 6 eigenspaces
with probability 100 % (ξ =4.59); 7 eigenspaces with probability 43.81 % (ξ = 0.58).
Equivalently, the intersection of the resolution indicator function Mk(σ/u) with the
line 1/ξ = 1/3 identifies the maximum random-flow dimensionless standard deviation
for which, with probability 99.73 %, the kth eigenspace is resolvable. Therefore all the
perturbed eigenspaces represented by the continuous lines below the dashed line 1/3
are resolvable with very high probability. A comparison between figure 5 and figure 4
supports this conclusion. However, the fact that the weighted means of different
perturbed energy levels are distinguishable does not guarantee that single perturbed
energy levels belonging to different λ̃-groups are not allowed to interfere. In figure 6
we plot the weighted means of the perturbed energy levels for the sixth and seventh

† As is well known the stated degeneracy of the wake POD is exact in the case of exact streamwise
periodicity. In most cases we should refer to an approximate degeneracy.
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Figure 6. σ/u = 0.01. (a) Weighted means of perturbed eigenvalues and (b) single perturbed
eigenvalues versus the number of samples.

eigenspaces as well as single energy fluctuations versus the sample number. We see
that even though the weighted means of these eigenvalues remain distinguishable,
single perturbed split eigenvalues may interfere.

We conclude that with degenerate unperturbed eigenvalues the meaning of fig-
ure 5(a) is semi-quantitative in the sense that there is a region close the dashed line that
should be treated with caution for inferences about single eigenvalues (it is rigorous
for their weighted means). If all the unperturbed eigenvalues are simple (as they are
in § 5.2) or if they do not split at all, then the predictions of figure 5 are rigorous.

5.1.3. Average energies and standard deviations

In figure 7 we plot the expected values (3.9) and the standard deviations (3.13)

for all the weighted means of the perturbed eigenvalues λ̃k as a function of the
dimensionless perturbation parameter σ/u. The comparison with the ensemble means
and the ensemble standard deviations obtained by the Monte Carlo method described
in § 5.1 supports the accuracy of the theoretical predictions.

An interesting result is represented by the asymptotic trend of all the standard
deviations to the same line which we shall call bulk line. This definition arises from
the fact that the mixing between different random energy levels occurs when they
have the same standard standard deviation (the bulk level) which is a function of the
flow uncertainty σ/u. It is easy to see from the structure of the power series expansion
(3.13)

σλ̃j
=

√
bj

(
σ

u

)2

+ cj

(
σ

u

)4

(5.1)

that the bulk line has equation

B :=
√

c

(
σ

u

)2

(5.2)

where the coefficient c � 4.333 depends only on the unperturbed dimensionless flow
and turns out to be a constant for all the perturbed eigenmodes, that is c = cj ∀j . This
coefficient is therefore an interesting invariant for this flow and it is approximately
equal to 10−3λ1. As we will see in § 5.2 the standard deviation for the perturbed energy
levels of the convective flow exhibits the same behaviour.

We conclude that there exists a limiting lower level of uncertainty in the energy
of the perturbed modes for which the modes themselves are resolvable. As shown in
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Figure 7. (a) Expected value and (b) standard deviation for all the perturbed energy levels
as a function of the dimensionless random flow standard deviation σ/u. Comparison between
the theoretical formulae (3.9), (3.13) (continuous lines) and the results (circles) from Monte
Carlo simulations (40 000 samples).

figure 7(b) and figure 8 this limiting value can be much lower than the uncertainty in
the flow field σ/u and it is given explicitly by equation (5.2). Equivalently we shall
say that every inference about the energy levels of the perturbed temporal modes is
meaningless if it is more accurate than

√
c(σ/u)2.

All the averaged perturbed energy levels (3.9) are increased by approximately the
same quantity (σ/u)2�t |Ω |d (|Ω | , �t are dimensionless) which is mode-independent.
In fact we have found that the other term in (3.9) is negligible with respect
(σ/u)2�t |Ω |d for all the indexes. The comparison with the ensemble means obtained
by the Monte Carlo method shown in figure 7(a) supports this conclusion. This also
implies that the ratio between the averaged perturbation energies 〈δλk〉 and the bulk
line (5.2) is a constant which depends only on the dimensionless space–time domain
and

√
c:

〈δλk〉
B =

|Ω |�td√
c

. (5.3)

The deviation of the ensemble means from the theoretical means observed in
figure 7(a) for very small σ/u is due to the limited sample size. In fact we observe
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that if certain perturbed eigenvalues have a standard deviation which is much greater
than their mean then 40000 samples could not be enough to ensure the closeness of
the ensemble mean to the ‘true’ analytical mean (see Appendix G).

We may ask when the perturbed energy levels are greater than the unperturbed
ones. The condition

σλ̃k
�

1

ξ
〈δλk〉, ξ > 0, (5.4)

answers this question with statistical confidence related to the choice of ξ . The
substitution of equations (3.9) and (3.13) into (5.4) gives an inequality which can be
solved analytically for σ/u. Graphically we can draw both σλ̃k

and 〈δλk〉/ξ and look
for the resolved eigenspaces inside the strip between the ‘bulk’ line (5.2) and the lines
〈δλk〉/ξ (see figure 8). For instance we see that if σ/u =0.1 then four eigenspaces
are resolvable: the second, the third and the fourth fall inside the aforementioned
strip. Therefore there is a high probability that they have an energy which is greater
than the corresponding unperturbed energy. To document this we plot in figure 9
the energy fluctuations versus the sample number for σ/u =0.1. We note that the
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〈δλk〉/λk ± 3σδλk

/λk (continuous lines) for the second, fourth, sixth, eighth, twelfth and fifteenth
eigenspaces as function of the dimensionless perturbation parameter σ/u.

predictions of figure 8 are confirmed, i.e. the energy of the perturbed mean field (λ̃1)
can be greater or less than the unperturbed energy while the energy levels of the
other perturbed eigenspaces are certainly greater. Note that the third and the fourth
eigenspaces are practically mixed as they are very close to the bulk line for σ/u =0.1
(see also figure 5).

5.1.4. Disturbance-sensitive structures

We would like to study the sensitivity of the energy levels with respect to
perturbations in the flow. To this end in figure 10 we plot

〈δλk〉
λk

k = 2, 4, . . . (5.5)

and the following confidence intervals

〈δλk〉
λk

± ξ
σδλk

λk

, k = 2, 4, . . . , (5.6)

for ξ = 3. Figure 10 shows that for every mode the ‘bulk’ phenomenon takes
place when the average perturbation energy 〈δλk〉 is approximately 10 times
the corresponding unperturbed energy level λk . This ratio is determined by the
intersections of the resolution indicator functions Mk(σ/u) shown in figure 5(a) with
the line 1/ξ = 1/3.

5.1.5. Statistics for the total energy of the perturbed field and the norm of H

The relevant statistics for the total energy of the perturbation and the norm
perturbation operator H are given in § 3.3 and Appendix E respectively. In figure 11
we compare such theoretical results to the ensemble means and ensemble standard
deviations obtained by the Monte Carlo method. The difference between the ensemble
means and the theoretical means observed in figure 11(a) for small σ/u is due to the
limited sample size. For σ/u � 7 × 10−3 there is a high probability (level ξ = 3) that the
total energy of the perturbed field is greater than the energy of the unperturbed one.
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of the perturbation operator H as function of the dimensionless perturbation parameter σ/u.
The squares are the results from Monte Carlo simulations (40 000 samples).

This limiting value can be expressed analytically by (3.21) and (3.22) with statistical
confidence related to the choice of ξ :

〈tr (H)〉 � ξσtr (H) ⇒ σ

u
� 2ξ

√
Θ2

d2|Ω |2S2 − 2dSΥ2

, (5.7)

where all the quantities on the right-hand side are calculated with the unperturbed
dimensionless field and the dimensionless geometry.

5.1.6. Random temporal modes

As shown in figure 4, every unperturbed POD eigenspace (except the mean field)
is two-dimensional and spanned by periodic functions which represent the time
evolution of the Kármán–Bénard downstream wake. It is well known that any linear
combination of eigenfunctions corresponding to the same degenerate eigenvalue is
still an eigenfunction. This implies that the periodic POD eigenmodes are defined up
to an arbitrary phase. Therefore to test our formulae we need to perform a Fourier
analysis of the sampled temporal modes to remove this arbitrary phase. As pointed
out in § 3.5 instead of the Fourier spectrum we shall compare its generating function,
i.e. the autocorrelation function (3.30). This is done in figure 12 for the second,
third, seventh and ninth modes. In figure 13 we plot the relevant statistics for the
third and ninth random temporal modes. We note that even though these modes are
near the bulk spectrum, for σ/u =0.1 and σ/u =0.01 respectively (see figure 4),
the theoretical autocorrelations (3.32) obtained by a first-order transformation
function (3.26) are very close to the sampled autocorrelations. This leads to the
conclusion that the resolvable perturbed temporal modes are not very sensitive to
perturbations.

5.1.7. Statistics for the fluctuating components of the velocity field

We consider the fluctuating components of the perturbed velocity field

ũ′
(x, t) := ũ(x, t) − U(x) (5.8)

where the mean flow U(x) is defined as

U(x) :=
1

|T |

∫
T

〈ũ(x, t)〉 dt =
1

|T |

∫
T

u(x, t) dt. (5.9)
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random temporal modes. The perturbation magnitude is σ/u = 0.1 for (a) and (b); σ/u = 0.01
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Figure 13. (a) Third and (b) ninth random temporal modes corresponding to σ/u =0.1 and
σ/u = 0.01 respectively.

The perturbation analysis is performed following the sketch of figure 2. The POD
eigenspectrum of the unperturbed fluctuating velocity field

u′(x, t) := u (x, t) − U(x) (5.10)

is shown in figure 14(a) together with some samples of perturbed spectra
corresponding to different σ/u; we note that the unperturbed spectrum is in very
good agreement with most POD studies of wakes past a cylinder (see for instance
Noack et al. 2003; Ma & Karniadakis 2002). In figures 14(b), 15, 16 we show the
results of the perturbation theory applied to ũ′

. Here the perturbation parameter
σ/u is still scaled on the unperturbed inflow streamwise velocity u and the number
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Figure 15. (a) Mean and (b) standard deviation of perturbed energy levels for the fluctuating
components of the velocity field as a function of the dimensionless random-flow standard
deviation σ/u. Comparison between the theoretical formulae (continuous lines) and the Monte
Carlo simulations (circles).

of independent samples generated by the Monte Carlo method is still 40000. As is
easily seen, the conclusions that can be drawn from the perturbation analysis are of
exactly the same type as in the previous sections. However here we note the interesting
behaviour of the 13th eigenspace whose unperturbed eigenvalue is simple (number
25 in figure 14a). For this mode the bulk phenomenon takes place at a standard
deviation which is greater than the bulk line level B. Moreover the hierarchy of
magnitudes of the standard deviations is broken (see figure 16). This result, confirmed
by the Monte Carlo simulations, can be due to the different multiplicity of the 13th
eigenvalue (λ13 = µ25).

5.2. Natural convective flow over an isothermal horizontal plate

We consider the heat transfer and natural convective two-dimensional flow over an
isothermal upward-facing plate. Natural convective flows induced over horizontal and
inclined heated plates have been the subject of numerous investigations (Goldstein
& Kei-Shun 1983; Fujii & Imura 1972; Kitamura & Kimura 1995; Chambers &
Lee 1997; Yousef, Tarasuk & McKenn 1982; Sparrow & Carlson 1986; Al-Arabi &
El-Riedy 1976; Hassan & Mohamed 1970) in recent decades. We have performed a
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Figure 16. Behaviour of the 13th eigenspace for the fluctuating components of the velocity
field (bold line): the bulk phenomenon takes place at a standard deviation which is greater
than the bulk line level and the hierarchy of magnitudes of the standard deviations is broken.
The Monte Carlo simulations (circles) confirm this result.

direct numerical simulation of the time-dependent Boussinesq equations

∂u
∂t

+ (u · ∇)u =
Gr

Re2
θ j − ∇p +

1

Re
∇2u,

∂θ

∂t
+ u · ∇θ =

1

RePr
∇2θ,

∇ · u = 0,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (5.11)

at Rayleigh number Ra = 4.75 × 106 (Pr = 0.72, Re = 1000), using the high-order
spectral/hp finite element method described in Karniadakis & Sherwin (1999). In
(5.11) j is the upward unit vector while u and θ are the dimensionless velocity and
temperature fields respectively. The dimensionless temperature is defined by

θ =
T − T∞

Tw − T∞
(5.12)

where Tw is the uniform temperature at the plate surface and T∞ is the reference
temperature. Also,

Gr =
gβ (Tw − T∞) L3

ν2
, Pr =

α

ν
, Ra = GrPr . (5.13)

Figure 17 shows the computational domain and the boundary conditions, which are
very similar to those used by Martorell, Herrero & Grau (2003). Kimura et al. (2002),
Kitamura & Kimura (1995) and Martorell et al. (2003) performed experiments with
horizontal and inclined heated plates with imposed heat flux in similar domains. The
flow starts from rest.

A Fourier analysis of the time series for the velocity (see figure 18) and the
temperature fields reveals that the highest dimensionless time frequency is everywhere
less than fsup = 6. We extracted S = 65 regular spaced snapshots from the DNS using a
dimensionless sampling frequency f =16 > 2fsup in order to satisfy Nyquist’s criterion.
The dimensionless frequency 0.246 characterizes the most energetic dimensionless
vortex shedding close to the heated plate (see figure 18). In figure 19 and figure 20
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Figure 17. (a) Schematic of the geometry, boundary conditions and (b) computational mesh.
The domain is composed of 2188 spectral elements each with 9 × 9 collocation points.
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Figure 19. (a) Horizontal and (b) vertical components of the dimensionless velocity field.

we show one snapshot of the dimensionless flow and temperature fields. In order to
compare the heat transfer features of plates of various shapes Goldstein, Sparrow &
Jones (1973) proposed a length scale L defined as the active surface divided by its
perimeter. For our infinite horizontal strip we have

L = lim
b→∞

ab

2(a + b)
=

a

2
, (5.14)
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Figure 20. Dimensionless temperature field. Snapshot on the right is a close-up.

–0.50 –0.25 0 0.25 0.50
0

50

100

150

200

x/L 

(a)

106105 107
100

101

102

RaL

N
u L

(b)

Lloyd & Moran (1976)
Goldstein et al. (1972)
Al Arabi & El Riedy (1976)
Bandrowsky & Rybski (1976)
Present numerical solution

N
u 

(x
* ,

 t*
)

Figure 21. (a) Local Nusselt number corresponding to the snapshot shown in figure 20 and
(b) published heat and mass transfer correlations for natural convection over horizontal plates.
The area over perimeter ratio is used as characteristic length.

where a and b are the width and the length of the plate respectively. Many
experimental Nu − Ra correlations such as those given by Al-Arabi & El-Riedy
(1976) and Bandrowski & Rybski (1976), originally based upon the width of the
plate a, have been recalculated by Goldstein & Kei-Shun (1983) as a function
of the area to perimeter length scale L. In figure 21(b) we plot the correlations
proposed by Al-Arabi & El-Riedy (1976), Lloyd & Moran (1974), Bandrowski &
Rybski (1976) and Goldstein et al. (1973) for the dependence of the averaged Nusselt
number on the Rayleigh number when these dimensionless groups are based on
the area to perimeter ratio (see Goldstein & Kei-Shun 1983). The correlations of
Bandrowski & Rybski (1976) and Goldstein et al. (1973) are extrapolated from exper-
iments at RaL � 2.5 × 105 and RaL � 104 respectively. Summarizing the main findings
of other studies (Hassan & Mohamed 1970; Fujii & Imura 1972; Yousef et al. 1982;
Sparrow & Carlson 1986) we can say that the averaged Nusselt number corresponding
to our Rayleigh number should be between 20 and 30 (see also Martorell et al. 2003).
This is what we have found as demonstrated in figure 21(a) where we plot the local
Nusselt number on the plate surface

Nu(x∗, t∗) =

(
∂θ

∂y∗

)
y=0

, x∗ ∈ [−0.5, 0.5], (5.15)
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Figure 22. (a) Eigenspectrum and (b–d) isocontours of the first three temperature POD
eigenmodes Φ1 (b), Φ2 (c) and Φ3 (d).

versus the dimensionless x∗ = x/L for the snapshot shown in figure 20. The averaged
Nusselt number

NuL =
1

|τ |

∫
τ

∫ 0.5

−0.5

Nu(x∗, t∗) dx∗ dt∗ (5.16)

where |τ | is the period of observation, is found to be NuL = 26.36, in very good
agreement with the experiment-based correlations.

The POD analysis of the unperturbed temperature field is shown in figure 22. The
first temperature mode carries the 96 % of the total energy. From the structure of
the second and the third temperature POD modes shown in figure 22 (spatial modes)
and figure 29 below in § 5.2.3 (temporal modes), we can draw conclusions on the main
mechanism responsible for the heat transfer. The symmetric-like structure of these
spatial modes and the periodic-like behaviour of the corresponding temporal modes
(figure 29) implies that the heat flux at the plate surface is waveform-like in time
and symmetric in space, 0.246 being the main dimensionless time frequency for both
the aforementioned temperature modes. This frequency is in very good agreement
with the main vortex shedding time frequency. This supports the conclusion that
this temperature coherent structure is determined by advection. Therefore the most
energetic temporal evolution of the heat transfer is determined by source zones
highlightened with dashed lines in figure 22 moving on the plate surface symmetrically
and periodically from the centre to the edges.

5.2.1. Statistics for the perturbed energy levels

At Ra = 4.75 × 106 all the unperturbed temperature POD eigenstates are simple.
Therefore there is no chance of having an eigenvalue splitting phenomenon and
the theoretical formulae in § 3.1 characterize the statistics of each perturbed energy
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Figure 24. Resolvable eigenmodes as a function of the dimensionless temperature standard
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level. As in § 5.1 we use the non-dimensional version of the perturbation theory
(3.4) where the dimensionless perturbation parameter for the temperature field
σ/(Tw − T∞) is scaled by the reference temperature difference Tw − T∞. We have
simulated random disturbances δT (xi , tl) according to the probability density (2.16)
at different levels σ/(Tw − T∞) and we constructed an ensemble of 40 000 independent
possible realizations of the perturbed temperature field at each level. The effects
of such perturbations on the unperturbed (DNS-based) POD eigenspectrum are
shown in figure 23. In figure 24 we plot the resolution indicator functions (3.18).
The small separation between the unperturbed energy levels makes it difficult to
characterize clearly the number of resolvable modes for given σ/(Tw − T∞) (the
resolution indicator functions are clustered). For instance, if we assume for simplicity
that the probability density for the perturbed energy levels is Gaussian then from
figure 24 we see that correspondingly to σ/(Tw − T∞) = 0.01 it is possible to resolve
20 modes with probability 99.89 % (ξ = 3.26); 30 modes with probability 96.92 %
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Figure 25. (a) Expected value and (b) standard deviation for all the perturbed energy levels
as a function of the dimensionless temperature standard deviation σ/(Tw − T∞). Comparison
between the theoretical formulae (3.9), (3.13) (continuous lines) and the results (circles) from
Monte Carlo simulations (40 000 samples).

(ξ = 2.16); 40 modes with probability 71.99 % (ξ =1.08). Note also that the most
energetic time-dependent dynamic (ψ2) will be almost completely over shadowed by
the random fluctuations for σ/(Tw − T∞) � 0.35 (figure 24). Under the hypothesis of
Gaussian density the resolution probability for the second mode corresponding to
such a perturbation magnitude will be approximately 38.29 % (ξ =0.5).

5.2.2. Averaged energies and standard deviations

In figure 25 we compare the predictions of the theoretical formulae (3.9) and
(3.13) to the ensemble means and ensemble standard deviations obtained by the
Monte Carlo method described in § 5.2.1. It is shown that the standard deviations of
the perturbed energy levels tend asymptotically to the same line (bulk line) as the
random temperature dimensionless standard deviation increases. This phenomenon is
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still represented by an equation similar to (5.2):

B =
√

c

(
σ

Tw − T∞

)2

, c = 0.00127. (5.17)

We note that c � 10−3λ1. As for the cylinder flow discussed in § 5.1 all the expected
perturbed energy levels turn out to be increased by approximately the same quantity
(σ/(Tw − T∞))2�t |Ω |d . In figure 26 we summarize the relevant statistics for all the
perturbed energy levels. With high probability the perturbed modes represented by
the continuous lines inside the strip between the bulk line and the line 〈δλk〉/3
have an energy which is greater than the corresponding unperturbed energy. The
sensitivity of the perturbed energy levels is studied in figure 27 where it is shown that
the maximum perturbation supportable by each mode (at level ξ = 3 of resolution
probability) depends on σ/(Tw − T∞). The ratio 〈δλk〉/λk ranges from 0.26 (60th
mode) to 19.82 (1st mode). This means, for instance, that the energy level of the
perturbed mean field will be indistinguishable from the energy of the second mode if
the expected perturbation energy is approximately 20 times the unperturbed energy
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Figure 28. Statistics for (a) the perturbation energy and (b) the Frobenius norm, of the
perturbation operator H as function of the dimensionless perturbation parameter σ/(Tw − T∞).
The squares are the results from Monte Carlo simulations (40 000 samples).

level. Figure 28 shows the relevant statistics for the total energy of the perturbation
as well as the norm of the perturbation operator H. With high probability (ξ = 3)
the total energy of the perturbed field becomes greater than the unperturbed one for
σ/(Tw − T∞) > 3.34 × 10−4.

5.2.3. Random temporal modes

All the unperturbed POD eigenstates are simple. Therefore the perturbation
expansions in § 3.4 characterize exactly the mean and the standard deviation of each
perturbed temporal mode. In figure 29 we compare the Monte-Carlo-based ensemble
mean and ensemble standard deviation to the theoretical predictions of equations
(3.27) and (3.29) for several random temporal modes. The comparison is made
for σ/(Tw − T∞) = 0.01. A very good agreement is found up to the 30th mode which,
under the hypothesis of Gaussian density, is resolvable with probability 96.92 %. Note
that the normalization of the expected values and the standard deviations shown in
figure 29 is needed for the comparison because the transformation (3.23) is not
unitary. Finally in figure 30 we plot the expected value as well as a confidence interval
for the 14th and 30th temporal modes.

6. Conclusions
We have developed a stochastic perturbation theory for the POD spatio-temporal

scales of a discrete random flow under the assumption that the perturbation of the
deterministic state is a Gaussian uncorrelated random field. We have shown that the
relevant statistics for the perturbed energy levels and the perturbed temporal modes
can be expressed in an explicit form as power series in the random-flow standard
deviation (§ 3.1, § 3.4). Such expansions provide connections between the random
elements of the flow and the uncertainty in its set of random spatio-temporal scales.

We applied the theory developed to the flow past a cylinder at Re = 100 (§ 5.1) and
to the natural convective flow over an isothermal horizontal plate at Ra = 4.75 × 106

(§ 5.2). Both of these studies show the existence of a limiting lower level of uncertainty
in the energy of the random POD modes for which the modes themselves are
resolvable. Interestingly this limiting value, characterized in terms of resolution
indicator functions (3.18) and bulk lines (5.2), can be much lower than the uncertainty
in the flow σ/u. The slope of the bulk line seems to be strongly correlated to the
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Figure 29. Random temporal modes corresponding to σ/(Tw − T∞) = 0.01. Comparison
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largest unperturbed eigenvalue λ1 (c � 10−3λ1 in (5.2) and (5.17)) for both the flows
discussed in this paper. The standard deviations of the random energy levels tend
asymptotically to this line as the flow uncertainty increases. This means that mixing
of different random flow scales occurs when the corresponding energy levels have
the same standard deviations. However the perturbation analysis of the fluctuating
velocity field for the cylinder wake (§ 5.1.7) shows an exception to this rule (figure 16).
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All the averaged perturbations in the energy levels are positive and exhibit a very
weak dependence on the particular mode, increasing them by approximately the same
quantity.

The expansions (3.27) and (3.29) for the statistics of random temporal modes turn
out also to be accurate for the modes near the bulk spectrum as demonstrated in
figures 12 and 29.

The specific new contributions of the present work are:
the development of a stochastic perturbation theory for the POD eigenmodes;
the characterization of the symmetry breaking between the resolvable part of the

temporal and the spatial dynamic for randomly perturbed flows;
the characterization of the number of POD resolvable modes in terms of

resolution indicator functions (3.18) and bulk lines (5.2);
the determination of the relevant statistics for the POD scales of the perturbed

flow past a cylinder and the perturbed natural convective flow over an isothermal
horizontal plate.

These results not only provide a better understanding of POD decompositions
of numerical and experimental data but also, and more importantly, include the
mechanism by which the uncertainty itself propagates from the flow field to its
spatio-temporal modes. Our approach can also be applied to more general types of
random perturbations δu (by a suitable recalculation of the expectation relations
given in Appendix B).

The issue of stochastic POD low-dimensional modeling is still an open question.
In particular a crucial point is how the randomness propagates in Galerkin models
or modal energy flow analyses (Noack et al. 2005). In principle the expansion for
the spatial modes (4.3) can be used to define random POD projectors. However
this straightforward approach has the inconvenience that the corresponding temporal
evolution will be random as well, thus not suitable for a system of ordinary differential
equations. In addition a formula like (4.3) is valid under the hypothesis of the absence
of eigenvalue splitting. A more promising approach for stochastic low-dimensional
modelling lies within the possibility of obtaining a polynomial chaos expansion
(Xiu & Karniadakis 2003; Wan & Karniadakis 2005b) for the POD spatial modes,
given a chaos expansion for the random flow ũ(x, t). (By a suitable redefinition of
the biorthogonal decomposition (2.1) and the inner product (2.2) it is possible to
represent a random flow field in terms of random (weakly orthogonal) spatial modes
and deterministic temporal modes.) A Galerkin projection onto these random modes
defines, after a suitable averaging operation, a deterministic temporal evolution. The
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reduced-order model of the random flow will then be some sort of deterministic
temporal evolution of random spatial structures. This allows a rigorous quantification
of the propagation of randomness in stochastic POD low-dimensional models of
random flows.

Appendix A. Finite-dimensional representations
In this Appendix we represent the perturbation problem formulated in § 2 in

a suitable finite-dimensional setting. We assume that the spatial domain Ω and
the temporal domain T are partitioned into N spatial points and S time instants
respectively. We approximate the integrals over the spatial domain by a weighted
formula (Karniadakis & Sherwin 1999) in the form∫

Ω

uα(x, tl) dx �
N∑

j=1

uα(xj , tl)wj, α = 1, . . . , d, (A 1)

where N is the total number of grid points and uα denotes the αth component
of the vector flow field. We assume that we have available S equidistant snapshots
{u(x, tl)}l = 1,..,S of the flow field u, each separated by �t . For the integration in time
we use a first-order approximation∫

T

uα(xi , t) dt � �t

S∑
l=1

uα(xi , tl), α = 1, . . . , d. (A 2)

Moreover we set

ũj l ≡ ũ(xj , tl), uj l ≡ u(xj , tl), δuj l ≡ δu(xj , tl). (A 3)

The discrete analogue of (2.9) is

ũj l = uj l + δuj l . (A 4)

We assume that the random variables {δuα
il} are zero-mean jointly Gaussian and

uncorrelated, with the same variance σ 2, i.e. the joint probability density function of
{δuα

il} has the form

π
(
δu1

11, . . . , δu
d
NS; σ
)

= K exp

[
− 1

2σ 2

N∑
i=1

S∑
l=1

d∑
α=1

(
δuα

il

)2]
, (A 5)

where K is a suitable normalization constant. Therefore δuj l is a discrete Gaussian
uncorrelated random field. It is well know that a set of zero mean Gaussian
uncorrelated random variables is also necessarily independent. We consider here
the case where all the variances σ 2 are the same, independently of the time, the
location and the vector component. One can also generalize the theory to the case
of different variances in each component of ũ or, more generally, by defining a
function σ 2(xk, tm) as Hachem et al. (2004) have recently done. However, their results
are limited to the Stieltjes transform of the normalized eigenvalue counting measure
when the dimension of the problem goes to infinity.

The finite-dimensional representation of the unperturbed temporal autocorrelation
(2.7b) is

Tlm ≡ T(tl, tm) =

N∑
i=1

d∑
α=1

uα
ilu

α
imwi. (A 6)
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Also, the finite-dimensional representations of the operators UU†, H(1) and H(2) (see
(2.12)) are

[UU†]lm = �t

d∑
α=1

N∑
i=1

uα
ilu

α
imwi, (A 7)

H
(1)
lm = �t

d∑
α=1

N∑
i=1

(
uα

ilδu
α
im + uα

imδuα
il

)
wi, (A 8)

H
(2)
lm = �t

d∑
α=1

N∑
i=1

δuα
ilδu

α
imwi. (A 9)

Everson & Roberts (2000), Zwald, Bousquet & Blanchard (2004) and Taylor et al.
(2002) analysed the relation between the correlation operator’s eigenspectrum and
the eigenspectrum of its finite-dimensional representation. It is useful to define other
matrices and related quantities. Let

T(z)
lm :=

N∑
i=1

d∑
α=1

uα
ilu

α
im(wi)

z, z ∈ �. (A 10)

We note that T(1)
lm equals the unperturbed temporal autocorrelation kernel (A 6). We

also define

Θz := tr
(
T(z)
)

=

S∑
l=1

N∑
i=1

d∑
α=1

(
uα

il

)2
(wi)

z, (A 11)

∥∥T(z)
∥∥2

F
:=

S∑
l=1

S∑
m=1

(
N∑

i=1

d∑
α=1

uα
ilu

α
im(wi)

z

)2

, (A 12)

Υz :=

N∑
i=1

(wi)
z. (A 13)

Clearly we have

Θ1 =
1

�t

S∑
k=1

µk,
∥∥T(1)
∥∥2

F
=

1

�t2

S∑
k=1

µ2
k, Υ0 = N, Υ1 = |Ω |, (A 14)

where |Ω | is the measure of the spatial domain; similarly |T | is the measure of the
temporal domain. We denote by {ψjk

(t)}k=1,..,mj
the mj eigenfunctions of UU† that

span its j th eigenspace of dimension mj . The projection matrix Pj onto such an
eigenspace is

[Pj ]lm := �t

mj∑
k=1

ψjk
(tl)ψjk

(tm), l, m = 1, . . . , S. (A 15)

The reduced resolvent (Kato 1995) with respect to the eigenvalue λj (counted with
its multiplicity) will be represented by the matrix

Sj :=
∑
k 	=j

Pk

λk − λj

. (A 16)
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Appendix B. Expectation relations for H(1) and H(2) products
In this section we derive some important expectation relations which are widely

used throughout the paper. First we note that if {δuα
il} is a zero-mean discrete

Gaussian uncorrelated random field with joint probability density (A 5) then the δuα
il

are necessarily independent. Therefore we can write〈
δuα

il

〉
= 0, (B 1a)〈

δuα
ilδu

β
jm

〉
= σ 2δij δlmδαβ, (B 1b)〈

δuα
ilδu

β
jmδu

γ
hn

〉
= 0, (B 1c)〈

δuα
ilδu

β
jmδu

γ
hnδu

η
kp

〉
= σ 4(δij δhkδlmδnpδαβδγη + δihδjkδlnδmpδαγ δβη

+ δikδjhδlpδmnδαηδβγ ), (B 1d)〈
δuα

ilδu
β
jmδu

γ
hnδu

η
kpδuλ

vr

〉
= 0, (B 1e)

...

where δjk is the Kronecker delta and 〈 · 〉 denotes the expectation operator

〈g〉 := K

∫ ∞

−∞
. . .

∫ ∞

−∞
g
(
δu1

11, . . . , δu
d
NS

)
exp

[
− 1

2σ 2

∑
i,l,α

(
δuα

il

)2]∏
i,l,α

d
(
δuα

il

)
. (B 2)

In equation (B 2) K is the normalization constant for the multivariate probability
density function. Using the equations (B 1a)–(B 1e) it is easy to prove the following
important expectation relations involving products of operators (A 8) and (A 9):

〈
H

(1)
ln

〉
= 0, (B 3a)

1

σ 2

〈
H

(1)
ln H (1)

pq

〉
= �t2

(
T(2)

lp δnq + T(2)
lq δnp + T(2)

np δlq + T(2)
nq δlp

)
, (B 3b)〈

H
(1)
ln H (1)

pq H (1)
mr

〉
= 0, (B 3c)

1

σ 2

〈
H

(2)
ln

〉
= �t |Ω |dδln, (B 3d)〈

H
(2)
ln H (1)

pq

〉
= 0, (B 3e)

1

σ 4

〈
H

(2)
ln H (2)

pq

〉
= �t2

(
|Ω |2d2δlnδpq + Υ2d

(
δlpδnq + δlqδnp

))
, (B 3f)

1

σ 4

〈
H

(2)
ln H (1)

pq H (1)
mr

〉
= �t3|Ω |dδln

(
T(2)

mpδrq + T(2)
rp δmq + T(2)

mqδrp + T(2)
rq δmp

)
+ �t3T(2)

mp

(
δqlδrn + δqnδrl

)
+ �t3T(2)

mq

(
δplδrn + δpnδrl

)
+ �t3T(2)

rp

(
δqlδmn + δqnδml

)
+ �t3T(2)

rq

(
δplδmn + δpnδml

)
,

... (B 3g)

where T(2)
lm and Υ2 are defined in (A 10) and (A 13) respectively. We observe that if

the sum of the superscripts of the coefficients inside the expectations is odd then the
expected value is zero. This result will be used very often for the computation of the
relevant statistics of the perturbed energy levels and temporal modes.



On proper orthogonal decomposition of randomly perturbed fields 249

Appendix C. The expected operator 〈W(2)
j 〉

In this Appendix we show how to compute the expected value of the second-order
perturbation operator defined in (3.24b):〈

W(2)
j

〉
= − Sj

〈
Ĥ

(2)〉
Pj + Sj

〈
Ĥ

(1)
Sj Ĥ

(1)〉
Pj

− S2
j

〈
Ĥ

(1)
Pj Ĥ

(1)〉
Pj − 1

2
Pj

〈
Ĥ

(1)
S2

j Ĥ
(1)〉

Pj . (C 1)

Using (B 3a)–(B 3d) we find〈
Ĥ

(2)〉
= d�t |Ω |SjPj , (C 2a)〈

Ĥ
(1)

Sj Ĥ
(1)〉

= �t2
(
T(2)Sj + tr (Sj )T(2) + tr

(
T(2)Sj

)
I + Sj T(2)

)
, (C 2b)〈

Ĥ
(1)

Pj Ĥ
(1)〉

= �t2
(
T(2)Pj + tr (Pj )T(2) + tr

(
T(2)Pj

)
I + Pj T(2)

)
, (C 2c)〈

Ĥ
(1)

S2
j Ĥ

(1)〉
= �t2

(
T(2)S2

j + tr
(
S2

j

)
T(2) + tr

(
T(2)S2

j

)
I + S2

j T(2)
)
. (C 2d)

Finally, substituting (C 2a)–(C 2d) into (C 1) and taking into account the well-known
identities SjPj = PjSj =0, P2

j = Pj we get〈
W (2)

j

〉
= �t2

([
tr (Sj )Sj − tr

(
Pj

)
S2

j − 1
2
tr
(
S2

j

)
Pj

]
T(2) − 1

2
tr
(
T(2)S2

j

)
I
)
. (C 3)

Appendix D. Computation of the expansion for spatial modes

Let us consider equation (4.2). We expand 1/

√
λ̃j (σ ) in a Laurent series near σ = 0,

1√
λ̃j (σ )

=
1√

λj + σ λ̂
(1)
j + σ 2λ̂

(2)
j . . .

=
1√
λj

− 1

2
σ

λ̂
(1)
j

λj

√
λj

+ σ 2

(
3

4

(
λ̂

(1)
j

)2
λ2

j

√
λj

−
λ̂

(2)
j

λj

√
λj

)
+ · · · . (D 1)

The substitution of equations (D 1) and (3.26) into (4.2) gives

Φ̃jk
(x, σ ) =

(
1√
λj

− 1

2
σ

λ̂
(1)
j

λj

√
λj

+ . .

)
(U† + σδU†)

(
ψjk

+ σW(1)
j ψjk

+ · · ·
)

=
1√
λj

U†ψjk
+ σ

(
U†W(1)

j√
λj

+
δU†√
λj

− 1

2

λ̂
(1)
j

λj

√
λj

U†

)
ψjk

+ · · · (D 2)

where we have defined

δU†φ :=

∫
T

δû(x, t)φ(t) dt. (D 3)

Finally, using the dispersion relation (2.5b) we obtain

Φ̃jk
(x, σ ) = Φjk

(x) + σ

(
U†W(1)

j U

λj

+
δU†U

λj

− 1

2

λ̂
(1)
j

λ2
j

U†U

)
Φjk

+ · · ·

= Φjk
(x) + σ

(
U†W(1)

j U

λj

+
δU†U

λj

− 1

2

λ̂
(1)
j

λj

I

)
Φjk

+ · · · , (D 4)

The definition (4.4) follows from (D 4).
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Appendix E. Statistics for the norm of the perturbation operator H

The integral operators defined in (2.6a), (2.6b), (2.13) and (2.14) are in the Hilbert–
Schmidt class (Kato 1995; Riesz & Sz-Nagy 1953). Therefore they can be considered
as vectors in the space that has with the inner product

(A, B)F =
∑

j

(Aφj , Bφj )

=

∫
T

∫
T

A(t, t ′)B(t, t ′) dt dt ′. (E 1)

The Hilbert–Schmidt (or Frobenius) norm ‖H‖F :=
√

(H, H)F of the perturbation
operator H is a unitary-invariant norm which takes into account a sort of mixture
effect of the perturbation. If we consider the spectral representations (Kato 1995) of
the correlation operators (2.14) and (2.6b)

ŨŨ
†
=
∑

k

λ̃kP̃k, UU† =
∑

k

λkPk, (E 2a, b)

where Pk , P̃k are spectral projectors of UU† and ŨŨ
†

respectively then we have∥∥∥∥∑
k

λ̃kP̃k −
∑

j

λjPj

∥∥∥∥2
F

= ‖H‖2
F . (E 3)

Other information can be obtained by considering the operators ŨŨ
†

and UU† (and
their spectral projectors) as vectors in the space that has with the inner product (E 1).
The squared norm of the symmetric perturbation H is

‖H‖2
F = tr (H2) =

∫
T

∫
T

H(t, t ′)2 dt dt ′. (E 4)

From (E 4) we see that the expected value of ‖H‖2
F is〈∥∥H∥∥2

F

〉
=

∫
T

∫
T

〈H(t, t ′)2〉 dt dt ′. (E 5)

Using (2.15), (B 3b), (B 3e) and (B 3f) we find〈∥∥H∥∥2
F

〉
= σ 2�t2((S + 1)(2Θ2 + dσ 2SΥ2) + d2σ 2S|Ω |2). (E 6)

The second-order moment of ‖H‖2
F is defined by〈∥∥H∥∥4

F

〉
=

∫
T

∫
T

∫
T

∫
T

〈H(t, t ′)2H(s, s ′)2〉 dt dt ′ds ds ′. (E 7)

After some computations the following expression for the standard deviation of ‖H‖2
F

is obtained:

σ‖H‖2
F

=
[
8σ 4�t4

(
Θ2

2 + (S + 2)‖T(2)‖2
F

)
+ 4σ 6�t4(1 + S)dΥ2(4Θ2 + Sdσ 2Υ2)

+ 8σ 6�t4d2|Ω |2(2Θ2 + Sdσ 2Υ2) + 16σ 6�t4|Ω |d(1 + S)(3Θ3 + Sdσ 2Υ3)

+ 4σ 6�t4(5 + 5S + 2S2)(4Θ4 + Sdσ 2Υ4)
]1/2

. (E 8)

Equations (E 6) and (E 8) are exact for random perturbations (2.16) of arbitrary
‘magnitude’ σ .
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Appendix F. The autocorrelation matrix for the random temporal modes
Let ψ be a temporal mode belonging to the j th eigenspace of UU†. The auto-

correlation matrix for ψ̃ can be computed using Kato’s transformation (3.23) as
follows: 〈

ψ̃(tn)ψ̃(tm)
〉

=
〈(

ψn + σ
(
W(1)

j ψ
)

n
+ . . .
)(

ψm + σ
(
W (1)

j ψ
)

m
+ . . .
)〉

= ψnψm + σ 2
〈(

W (1)
j ψ
)

n

(
W(1)

j ψ
)

m

〉
+ σ 2ψn

(〈
W(2)

j

〉
ψ
)

m

+ σ 2ψm

(〈
W(2)

j

〉
ψ
)

n
+ . . . , (F 1)

where ψn ≡ ψ(tn), 〈W(2)
j 〉 is given in (C 3) and〈(

W(1)
j ψ
)

n

(
W(1)

j ψ
)

m

〉
= �t
[[

Sj T(2)Sj

]
nm

+
[
S2

j

]
nm

(
T(2)ψ, ψ

)
T

]
. (F 2)

The symmetry with respect n and m implies that
〈
ψ̃nψ̃m

〉
is represented by a symmetric

matrix.

Appendix G. A simple estimation of the number of samples required to resolve
the means of the perturbed eigenvalues

In this Appendix we use a basic result in probability theory to estimate the
number of independent realizations of the pertubed eigenvalues required to resolve
their statistical means with a certain confidence. We assume that all the possible
determinations of δλj are bounded certainly by ± 3σλ̃j

and we denote by Sλ̃j

the number of independent samples of λ̃j . Using the Hoeffding inequality (Hoeffding
1963)

Pr

⎧⎨⎩
∣∣∣∣∣∣ 1

Sλ̃j

S
λ̃j∑

k=1

δλ
(k)
j − 〈δλj 〉

∣∣∣∣∣∣ � ε

⎫⎬⎭ � exp
(

− Sλ̃j
ε2
/(

18σλ̃j

))
(G 1)

we conclude that in order to have the sample mean close to the decimal (ε = 〈δλj 〉/10)
of the true mean with probability at least 90 %, we would need

exp
(
−Sλ̃j

ε2
/(

18σλ̃j

))
� 0.1 ⇒ Sλ̃j

� 1800 ln(10)
σλ̃j

〈δλj 〉2
(G 2)

independent samples. For instance, if σ/u = 10−4 then (G 2) applied to the largest
eigenvalue (k = 1) of the wake POD (figure 8) gives Sλ̃1

� 9 × 1011. We remark that
this simple estimation is not optimal and more refined bounds have been developed
(see Lugosi 2004; Papoulis 1991; Bousquet 2002 and the references therein).
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